Electrically Conductive [Fe4S4]-based Organometallic Polymers

11 April 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Tailoring the molecular components of hybrid organic-inorganic materials enables precise control over their electronic properties. Designing electrically conductive coordination materials, e.g. metal-organic frameworks (MOFs), has relied on single-metal nodes because the metal-oxo clusters present in the vast majority of MOFs are not suitable for elec- trical conduction due to their localized electron orbitals. Therefore, the development of metal-cluster nodes with delocal- ized bonding would greatly expand the structural and electrochemical tunability of conductive materials. Whereas the cuboidal [Fe4S4] cluster is a ubiquitous cofactor for electron transport in biological systems, few electrically conductive artificial materials employ the [Fe4S4] cluster as a building unit due to the lack of suitable bridging linkers. In this work, we bridge the [Fe4S4] clusters with ditopic N-heterocyclic carbene (NHC) linkers through charge-delocalized Fe-C bonds that enhance electronic communication between the clusters. [Fe4S4Cl2(ditopic NHC)] exhibits a high electrical conductivity of 1 mS cm−1 at 25 oC, surpassing the conductivity of related but less covalent materials. These results highlight that synthetic control over individual bonds is critical to the design of long-range behavior in semiconductors.

Keywords

cubane cluster
conductivity
coordination polymer
carbene

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.