Investigating the Heaviest Halogen: Lessons Learned from Modeling the Electronic Structure of Astatine's Small Molecules

08 November 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a systematic study of electron-correlation and relativistic effects in diatomic molecular species of the heaviest halogen astatine (At) within relativistic single- and multi-reference coupled-cluster approaches and relativistic density functional theory. We establish revised reference \textit{ab initio} data for the ground states of \ce{At2}, \ce{HAt}, \ce{AtAu}, and \ce{AtO+} using a highly accurate relativistic effective core potential model and in-house basis sets developed for accurate modeling of molecules with large spin-orbit effects. Spin-dependent relativistic effects on chemical bonding in the ground state are comparable to the binding energy or even exceed it in \ce{At2}. Electron-correlation effects near the equilibrium internuclear separation are mostly dynamical and can be adequately captured using single-reference CCSD(T). However, bond elongation in \ce{At2} and, especially, \ce{AtO+} results in rapid manifestation of its multi-reference character. While useful for evaluating the spin-orbit effects on the ground-state bonding and properties, the two-component density functional theory lacks predictive power, especially in combination with popular empirically adjusted exchange-correlation functionals. This drawback supports the necessity to develop new functionals for reliable quantum-chemical models of heavy-element compounds with strong relativistic effects.

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Technical details on converging two-component Hartree–Fock calculations; all in-house basis sets.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.