Inorganic Chemistry

Molecular Capacitors: Accessible 6- and 8-electron Redox Chemistry from Dimeric “Ti(I)” and “Ti(0)” Synthons Support-ed by Imidazolin-2-Iminato Ligands.



Reduction of the diamagnetic Ti(III)/Ti(III) dimer [Cl2Ti(μ-NImDipp)]2 (1) (NImDipp = [1,3-bis(Dipp)imidazolin-2-iminato]-, Dipp = NC6H3-2,6-Pri2) with 4 and 6 equiv of KC8 generates the intramolecularly arene-masked, dinuclear titanium com-pounds [(μ-N-μ-η6-ImDipp)Ti]2 (2) and {[(Et2O)2K](μ-N-μ-η6:η6-ImDipp)Ti}2 (3), respectively, in modest yields. The compounds have been structurally characterized by X-ray crystallographic analysis and inspection of the bond metrics within the η6-coordinated aryl substituent of the bridging imidazolin-2-iminato ligand show perturbation of the aromatic system most consistent with two-electron reduction of the ring. As such, 2 and 3 can be assigned respectively as possessing metal centers in formal Ti(III)/Ti(III) and Ti(II)/Ti(II) oxidation states. Exploration of their redox chemistry reveal the ability to reduce several substrate equivalents. For instance, treatment of 2 with excess C8H8 (COT) forms the novel COT-bridged complex [(ImDippN)(η8-COT)Ti](μ-η2:η3-COT)[Ti(η4-COT)(NImDipp)] (4) that dissociates in THF solutions to give mononuclear (ImDippN)Ti(η8-COT)(THF) (5). Addition of COT to 3 yields heterometallic [(ImDippN)(η4-COT)Ti(μ-η4:η5-COT)K(THF)(μ-η6:η4-COT)Ti(NImDipp)(μ-η4:η4-COT)K(THF)2]n (6). Compounds 2 and 5 are the products of the 4-electron oxidation of 2, while 6 stands as the 8-electron oxidation product of 3. Reduction of organozides was also explored. Low temperature reaction of 2 with 4 equiv of AdN3 gives the terminal and bridged imido complex [(ImDippN)Ti(=NAd)](μ-NAd)2[Ti(NImDipp)(N3Ad)] (7) that undergoes intermolecular C-H activation of toluene at room temperature to afford the amido compound [(ImDippN)Ti(NHAd)](μ-NAd)2[Ti(C6H4Me)(NImDipp)] (8-tol). These complexes are the 6-electron oxidation products of the reaction of 2 with AdN3. Furthermore, treatment of 3 with 4 equiv of AdN3 produces the thermally sta-ble Ti(III)/Ti(III) terminal and bridged imido [K(18-crown-6)(THF)2]{[(ImDippN)Ti(NAd)](μ-NAd)2K[Ti(NImDipp)]} (10). Alto-gether, these reactions firmly establish 2 and 3 as unprecedented Ti(I)/Ti(I) and Ti(0)/Ti(0) synthons with the clear ca-pacity to effect multi-electron reductions ranging from 4 – 8 electrons.


Thumbnail image of Ti Dimers - 2022_08_10 SF_AT - ChemRxiv.pdf

Supplementary material

Thumbnail image of Ti Dimers - Supp Info - 2022_08_10 SF- ChemRxiv.pdf
Supporting Information
Supporting Information that includes X-ray structures, NMR data, and other spectroscopic data