A Simple Method for High-Quality Ultra-Thin Graphene Oxide Films Facilitates Nanoscale Investigations of Ion and Water Adsorption

03 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Graphene oxide (GO) is a promising material for separations. Nanoscale GO thin films at the air/water interface are excellent experimental models to understand molecular-scale interactions of ions and water with GO. However, thin film formation strongly depends on how the GO was processed. This paper reports a simple, reliable, and quick method of preparing ultra-thin GO films, irrespective of their origin. This method allows the quantitative investigation of differences in film structure, ion adsorption, and interfacial water behavior with multiple surface sensitive probes. The data show that functional groups and oxidative debris vary significantly between different commercially available GO samples. These differences strongly affect ion adsorption and interfacial water behavior near GO, which are vital properties in separation applications. The results demonstrate the importance of the GO process conditions and provide experimental methods to quantify molecular-scale differences between different GO films.

Keywords

Graphene oxide
ion adsorption
x-ray reflectivity
sum frequency generation spectroscopy
air/water interface
x-ray fluorescence near total reflection

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental details of SFG and synchrotron experiments, XPS characterization of GO films, additional SFG data on D2O subphase, zoomed in version of Figure 2c, and fit parameters of SFG and XR data analysis.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.