Teaching undergraduate physical chemistry lab with kinetic analysis of COVID-19 in the United States

26 April 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A physical chemistry lab for undergraduate students described in this report is about applying kinetic models to analyze the spread of COVID-19 in the United States and obtain the reproduction numbers. The susceptible-infectious-recovery (SIR) model and the SIR-vaccinated (SIRV) model are explained to the students and are used to analyze the COVID-19 spread data from U.S. Centers for Disease Control and Prevention (CDC). The basic reproduction number R0 and the real-time reproduction number Rt of COVID-19 are extracted by fitting the data with the models, which explains the spreading kinetics and provides a prediction of the spreading trend in a given state. The procedure outlined here shows the differences between the SIR model and the SIRV model. The SIRV model considers the effect of vaccination which helps explain the later stages of the ongoing pandemic. The predictive power of the models is also shown giving the students some certainty in the predictions they made for the following months.

Keywords

Physical chemistry education
kinetics
COVID-19 dynamics
reproduction numbers
laboratory course

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Excel Sheets
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.