Sequential vs integrated CO2 capture and electrochemical conversion: An energy comparison

17 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Integrating carbon dioxide (CO2) electrolysis with CO2 capture provides new exciting opportunities for energy reductions by simultaneously removing the energy-demanding regeneration step in CO2 capture and avoiding critical issues faced by CO2 gas-fed electrolysers. However, understanding the potential energy advantages of an integrated capture and conversion process is not straightforward. There are only early-stage demonstrations of CO2 conversion from capture media very recently, and an evaluation of the broader process is paramount before claiming any energy gains from the integration. Here we identify the upper limits of the integrated capture and conversion from an energy perspective by comparing the working principles and performance of integrated and sequential CO2 conversion approaches. Our high-level energy analyses unveil that an integrated electrolysis unit must operate below 1000 kJ/molCO2 to ensure an energy benefit of up to 44% versus the existing state-of-the-art sequential route. However, such energy benefits diminish if future gas-fed electrolysers resolve the carbonation issue and if an integrated electrolyser has poor conversion efficiencies. We conclude with opportunities and limitations to develop industrially relevant integrated electrolysis, providing performance targets for novel integrated electrolysis processes.

Keywords

CO2 electrolysis
CO2 capture
energy cost
process intensification
carbonate regeneration

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
This is the supporting information containing modelling approaches and data used to build the model.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.