Insight into the Gd–Pt Bond: Slow Magnetic Relaxation of a Heterometallic Gd–Pt Complex

10 November 2021, Version 1

Abstract

Lanthanide (Ln) compounds are common research targets in the field of magnetism and optics. Their properties arise from the electron localized in the f-orbital. Moreover, the effect of the covalency between lanthanide and ligands on magnetism attracted significant attention. We provided insight into the Gd–Pt bond (of the heterometallic Ln-Pt complexes: {[Pt(PhSAc)4]Ln[(PhSAc)4Pt]} NEt4·2DMF (Ln = Y(0), La(1), Gd(2); PhSAc = thiobenzoate, NEt4 = tetraethylammonium)); single-crystal polarized X-ray absorption near edge structure (XANES) reveal the electronic states around metal ion, where spectra of Gd-LIII edges show the Gd–Pt direction has the highest covalency (less ionic) around Gd ion in 2. In addition, calculating natural bonding (NBO) analysis, natural population analysis (NPA), LOL, and atoms in molecules (AIM), ab initio calculations reveal the role of metallic and organic ligands in the electronic and magnetic properties of Ln complexes. The slow magnetization relaxation of the Gd complex, which has not been reported previously in the Pt–Gd–Pt system, was observed up to 45K, the highest temperature reported to date among isolated Gd-complexes.

Keywords

heterometallic bond
gadolinium
magnetic properties
slow magnetic relaxation

Supplementary materials

Title
Description
Actions
Title
tables and figures
Description
There are additional tables and figures for supporting information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.