Metal-catalyzed organic reactions by Resonant Acoustic Mixing

27 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We introduce catalytic organic synthesis by Resonant Acoustic Mixing (RAM): a mechanochemical methodology that does not require bulk solvent or milling media. Using as model reactions ruthenium-catalyzed ring-closing metathesis, ene-yne metathesis and copper-catalyzed sulfonamide-isocyanate coupling, we demonstrate RAM-based mechanochemical synthesis that is faster and operationally simpler than conventional ball milling. Moreover, the method can be readily scaled-up, as demonstrated by straightforward catalytic synthesis of the antidiabetic drug Tolbutamide from hundreds of milligrams to at least 10 grams, without any significant changes in reaction conditions.

Keywords

mechanochemistry
acoustic mixing
Green Chemistry
pharmaceuticals
catalysis

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Details of experimental procedures and selected (NMR, FTIR-ATR, MS) characterization data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.