Rapid Removal of Fluoride from Water Using Core@shell and @Shell Nanoparticles of SiO2@ZrO2 and @ZrO2. Investigation of the Mechanisms Involved and Impact of Elemental Leaching

23 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fluoride is a natural contaminant of water ⁠that endangers many people worldwide when present in concentrations higher than 2 ppm. Here, fluoride removal by four different nanostructured colloidal particles (SiO2@ZrO2nc, SiO2@ZrO2c, @ZrO2nc, and @ZrO2c) was measured in batch systems within a period of 24 h. Surprisingly, these materials removed fluoride from the water solutions and reached equilibrium in less than 10 minutes. The combination of high specific surface and fast fluoride removal placed these materials among the top materials currently known in fluoride removal. Also, the impact of element leaching was measured and quantified. The influence of time, pH, and fluoride concentration on leaching of Zr and Si was evaluated with a response surface methodology. Leaching of Zr and Si continued for several hours and depended on first-order, quadratic and cross-product coefficients. Previous studies of fluoride removal with zirconium oxide often assumed that a decrease in fluoride concentration in the solution indicated that fluoride was bound to the surface of the oxide. Zirconium oxide's solubility in water is low, but not zero. Hence, Zr might have formed soluble fluorocomplexes. This is the first report of fluoride removal with zirconium oxide that studied the leaching of the solid to exclude the formation of soluble fluorocomplexes.

Keywords

zirconium oxide
core@shell
@shell
fluoride removal from water
silica
leaching
fluorocomplex
RSM

Supplementary materials

Title
Description
Actions
Title
2021-03-22PP
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.