Unlocking Iminium Catalysis in Artificial Enzymes to Create a Friedel-Crafts Alkylase

19 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We show that the incorporation of the non-canonical amino acid para-aminophenylalanine (pAF) into the non-enzymatic protein scaffold LmrR creates a proficient and stereoselective artificial enzyme (LmrR_pAF) for the vinylogous Friedel-crafts alkylation between alpha, beta-unsaturated aldehydes and indoles. pAF acts as a catalytic residue, activating enal substrates towards conjugate addition via the formation of intermediate iminium ion species, whilst the protein scaffold provides rate acceleration and enantio-induction. Improved LmrR_pAF varants were identified by direted evolution advised by alanine-scanning to obtain a triple mutant that provided higher yields and enantioselectivities for a range of enals and indoles. Analys of Michaelis-Menten kinetics of LmrR-pAF and tevolved mutants reveals that new activities emerge via evolutionary pathways that diverge from one another and specialise catalytic reactivity.

Keywords

Artificial Enzymes
Friedel-Crafts alkylation
iminium ion
non-canonical amino acids
stop codon suppression
designer enzymes
directed evolution

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.